498 research outputs found

    General Versus Spinal Anesthesia: Which is a Risk Factor for Octogenarian Hip Fracture Repair Patients?

    Get PDF
    SummaryBackgroundMost studies have shown no difference between the two types of anesthesia administered to hip fracture patients. This study compared postoperative morbidity and mortality in octogenarian patients who received either general or spinal anesthesia for hip fracture repair.MethodsWe retrospectively analyzed the hospital records of 335 octogenarian patients who received hip fracture repair in our teaching hospital between 2002 and 2006. A total of 167 and 168 patients received general and spinal anesthesia, respectively. Morbidity, mortality, and intraoperative and preoperative variables were compared between groups.ResultsThere were no mortality differences between spinal and general anesthesia groups. However, the overall morbidity was greater in the general anesthesia group than in the spinal anesthesia group (21/167 [12.6%] vs. 9/168 [5.4%]; p = 0.02). Respiratory system-related morbidity was also higher in the general anesthesia group than in the spinal anesthesia group (11/167 [6.6%] vs. 3/168 [1.8%]; p = 0.03). Logistic regression analysis revealed two significant predictors of postoperative morbidity: anesthesia type (general; odds ratio, 2.39) and preexisting respiratory diseases (odds ratio, 3.38).ConclusionGeneral anesthesia increased the risk of postoperative morbidity in octogenarian patients after hip fracture repair, and patients with preexisting respiratory diseases were especially vulnerable. Spinal anesthesia is strongly recommended in such individuals

    Electrowetting of Superhydrophobic ZnO Inverse Opals

    Full text link

    Atomistic Control in Molecular Beam Epitaxy Growth of Intrinsic Magnetic Topological Insulator MnBi2Te4

    Full text link
    Intrinsic magnetic topological insulators have emerged as a promising platform to study the interplay between topological surface states and ferromagnetism. This unique interplay can give rise to a variety of exotic quantum phenomena, including the quantum anomalous Hall effect and axion insulating states. Here, utilizing molecular beam epitaxy (MBE), we present a comprehensive study of the growth of high-quality MnBi2Te4 thin films on Si (111), epitaxial graphene, and highly ordered pyrolytic graphite substrates. By combining a suite of in-situ characterization techniques, we obtain critical insights into the atomic-level control of MnBi2Te4 epitaxial growth. First, we extract the free energy landscape for the epitaxial relationship as a function of the in-plane angular distribution. Then, by employing an optimized layer-by-layer growth, we determine the chemical potential and Dirac point of the thin film at different thicknesses. Overall, these results establish a foundation for understanding the growth dynamics of MnBi2Te4 and pave the way for the future applications of MBE in emerging topological quantum materials.Comment: 20 pages, 4 figure

    Electrical Capacitance Volume Tomography: Design and Applications

    Get PDF
    This article reports recent advances and progress in the field of electrical capacitance volume tomography (ECVT). ECVT, developed from the two-dimensional electrical capacitance tomography (ECT), is a promising non-intrusive imaging technology that can provide real-time three-dimensional images of the sensing domain. Images are reconstructed from capacitance measurements acquired by electrodes placed on the outside boundary of the testing vessel. In this article, a review of progress on capacitance sensor design and applications to multi-phase flows is presented. The sensor shape, electrode configuration, and the number of electrodes that comprise three key elements of three-dimensional capacitance sensors are illustrated. The article also highlights applications of ECVT sensors on vessels of various sizes from 1 to 60 inches with complex geometries. Case studies are used to show the capability and validity of ECVT. The studies provide qualitative and quantitative real-time three-dimensional information of the measuring domain under study. Advantages of ECVT render it a favorable tool to be utilized for industrial applications and fundamental multi-phase flow research

    Star Poly( N

    Get PDF
    New star poly(N-isopropylacrylamide)-b-polyhedral oligomeric silsesquioxane (PNIPAm-b-POSS) copolymers were synthesized from octa-azido functionalized POSS (N3-POSS) and alkyne-PNIPAm, which was prepared using an alkyne-functionalized atom transfer radical polymerization (ATRP) initiator (propargyl 2-bromo-2-methylpropionamide), via click chemistry. These star PNIPAm-b-POSS copolymers undergo a sharp coil-globule transition in water at above 32°C changing from a hydrophilic state below this temperature to a hydrophobic state above it, which is similar to linear PNIPAm homopolymers. More interestingly, we found that these star polymers exhibited strong blue photoluminescence in water above a lower critical solution temperature (LCST). This photoluminescence was likely due to the constrained geometric freedom and relatively rigid structure caused by intramolecular hydrogen bonding within the star PNIPAm polymers, which exhibit an intrinsic fluorescent behavior

    Roadmap for optofluidics

    Get PDF
    Optofluidics, nominally the research area where optics and fluidics merge, is a relatively new research field and it is only in the last decade that there has been a large increase in the number of optofluidic. applications, as well as in the number of research groups, devoted to the topic. Nowadays optofluidics applications include, without being limited to, lab-on-a-chip devices, fluid-based and controlled lenses, optical sensors for fluids and for suspended particles, biosensors, imaging tools, etc. The long list of potential optofluidics applications, which have been recently demonstrated, suggests that optofluidic technologies will become more and more common in everyday life in the future, causing a significant impact on many aspects of our society. A characteristic of this research field, deriving from both its interdisciplinary origin and applications, is that in order to develop suitable solutions a. combination of a deep knowledge in different fields, ranging from materials science to photonics, from microfluidics to molecular biology and biophysics,. is often required. As a direct consequence, also being able to understand the long-term evolution of optofluidics research is not. easy. In this article, we report several expert contributions on different topics. so as to provide guidance for young scientists. At the same time, we hope that this document will also prove useful for funding institutions and stakeholders. to better understand the perspectives and opportunities offered by this research field

    Sustained proliferation in cancer: mechanisms and novel therapeutic targets

    Get PDF
    Proliferation is an important part of cancer development and progression. This is manifest by altered expression and/or activity of cell cycle related proteins. Constitutive activation of many signal transduction pathways also stimulates cell growth. Early steps in tumor development are associated with a fibrogenic response and the development of a hypoxic environment which favors the survival and proliferation of cancer stem cells. Part of the survival strategy of cancer stem cells may manifested by alterations in cell metabolism. Once tumors appear, growth and metastasis may be supported by overproduction of appropriate hormones (in hormonally dependent cancers), by promoting angiogenesis, by undergoing epithelial to mesenchymal transition, by triggering autophagy, and by taking cues from surrounding stromal cells. A number of natural compounds (e.g., curcumin, resveratrol, indole-3-carbinol, brassinin, sulforaphane, epigallocatechin-3-gallate, genistein, ellagitannins, lycopene and quercetin) have been found to inhibit one or more pathways that contribute to proliferation (e.g., hypoxia inducible factor 1, nuclear factor kappa B, phosphoinositide 3 kinase/Akt, insulin-like growth factor receptor 1, Wnt, cell cycle associated proteins, as well as androgen and estrogen receptor signaling). These data, in combination with bioinformatics analyses, will be very important for identifying signaling pathways and molecular targets that may provide early diagnostic markers and/or critical targets for the development of new drugs or drug combinations that block tumor formation and progression
    • …
    corecore